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Motivation Sequencing technologies play an increasing role in the investigation
of gene expression (RNA-Seq). The most common RNA-Seq strategy is based on
random shearing, amplification and high-throughput sequencing of the RNAs;
yielding millions of sequence reads which serve to characterize whole-genome
transcriptional profiles [1]. We developed Parseq, a statistical method to esti-
mate the local transcription levels and to identify transcript borders. Extending
previous work on tilling array [2], this transcription landscape reconstruction
relies on a State-Space Model (SSM) to describe transcription level variations in
terms of abrupt shifts and more progressive drifts. The transcription level at the
genome position t is denoted ut and corresponds to the expectation of yt, the
count of reads with 5’-end mapping to position t. It cannot be directly equated
to the read count yt due to randomness and biases in library preparation and
sequencing. We use Particle Gibbs, a Gibbs algorithm based on a conditional
Sequential Monte Carlo, to estimate the SSM parameters and reconstruct the
trajectory u = (ut)t≥1 from the sequence of read counts y = (yt)t≥1.

A key point to obtain good results with this framework is to incorporate a
realistic emission model for the distribution of yt given ut.

Distribution of read counts in real data sets The variability of RNA-
Seq read counts has been approximated by a Poisson (P) distribution when
re-sequencing of the same library [1] and by a Negative Binomial (NB) when
comparing between samples [3]. For yt|ut, a mixed Poisson distribution seems
unavoidable to account simultaneously for the incompressible variance of the
final sampling by sequencing (Poisson) and for the extra-variability introduced
by randomness in library preparation and by position-specific biases occurring
at all steps of the protocols. The Poisson-Gamma mixture is the simplest choice
as it corresponds to the NB. Here, it leads to envision the relationships yt ∼
P (utzt) where zt would follow a Gamma distribution with mean 1 and variance
φ (variance ut + φu2t ).

We examined the distribution of read counts in regions of homogeneous ex-
pression level (e. g. ORFs) of two real data sets. In particular, we asked whether
the NB could capture the relationships between mean and variance and simul-
taneously account for the fraction of positions with zero-counts (fig. 1). Marked
discrepancies between the data and the NB are seen not only in the fraction
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Fig. 1: Read counts distribution in regions of homogeneous expression. S. cerevisiae (SRR121907,
SOLiD data, read coverage 1.6 reads/bp ) - left; E. coli (SRR794838, Illumina, 2.4 reads/bp) - right.
Dots: long open-reading frames (ORF, region without in-frame stop codon); Dashed lines: NB with
overdispersion estimated via variance versus mean regression; Plain lines: Parseq model.

of zero-counts but also in the behaviour of the variance at low expression level
where it exceeds ut+φu2t . Breaking this relationship between mean and variance
implies a relationships between the mixing distribution and ut more subtle than
a simple scaling.

A new read count model We adopted a mechanistic perspective to develop
the more complex emission model incorporated in Parseq. Our aim is to ac-
count for the three main steps of the experimental protocol: (i) initial molecule
sampling and fragmentation, (ii) amplification, and (iii) final sampling by se-
quencing. Namely, we write yt ∼ P(xtat) where at (mean µa) wishes to capture
the effect of randomness in amplification, and xt (mean ut/µa) is aimed at repre-
senting the number of molecules after initial sampling. The Poisson distribution
accounts for the final sampling. We capture the additional variability introduced
by position-specific biases in library preparation with a supplementary random
term st that impacts on initial molecule sampling : xt ∼ P(utst/µa) with st
having (for simplicity) a Gamma distribution of mean 1 an variance 1/κs.

With a Gamma distribution (shape κ and scale θ) for the amplification term
at and after integration over all at the density of our emission model writes

π(yt;ut, st) =

∞∑
xt=0

P(xt;
utst
κθ

) · NB(yt;κ,
xtθ

xtθ + 1
).

This density could also be integrated over all st but in Parseq we introduced a
Markov dependency between st+1 and st to account for short-range autocorrela-
tion between counts. This model makes it possible to capture the characteristics
of the read count variability (fig. 1) and increases our ability to disentangle
genuine transcription breakpoints from protocol induced variations.
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