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Background. In genomic selection regularized methods have mostly been used
for their ability to handle high dimensional data and little attention has been
devoted to the development of penalty functions including prior knowledge.
Moreover, while several traits are usually considered in a given experiment,
most methods only perform single trait genomic selection, neglecting correla-
tions between phenotypes and leading to poor performance for the prediction
of traits with low heritability. To circumvent these limitations, we consider the
general linear model to simultaneously predict q responses (output variables)
using the same set of p markers (input variables) based on a training sample
{(xi,yi)}i=1,...,n. One has

yi = BTxi + εi, εi ∼ N (0,R), ∀i = 1, . . . , n, (1)

where εi is a noise term with a q-dimensional unknown covariance matrix R,
and B is the p× q matrix of regression coefficients.

Structured regularization with underlying sparsity. The present work
proposes a general multivariate regression framework with three purposes: i)
to account for the dependency structure between the outputs, i.e. to integrate
the estimation of R in the inference process; ii) to integrate some prior infor-
mation about linkage disequilibrium to account for the dependency structure
between markers and evaluate its influence on the different phenotypes; iii) to
induce sparsity on partial covariances via a set of parameters Ω rather than on
the regression coefficients B, since according to the Gaussian graphical models
(GGM) direct effects are measured by partial covariances between predictors
and responses. We present an estimator to achieve these three goals using the
conditional GGM formulation proposed in [1], whose conditional likelihood L
is penalized by two regularization terms: the first term accounts for sparsity of
the direct effects Ω and the second one accounts for linkage disequilibrium via
a structuring matrix L. The (convex) objective function writes

J(Ω,R) = − 1

n
logL(Ω,R) +

λ2
2

tr
(
tΩLΩR

)
+ λ1‖Ω‖1.

This work comes with an accompanying optimization procedure to minimize J .



Genomic selection in Brassica napus. We illustrate our proposal on the
study conducted by [2] where n = 103 lines of Brassica napus are considered, on
which p = 300 genetic markers and q = 8 traits were recorded. Traits included
are five percent winter survival for 1992, 1993, 1994, 1997 and 1999 and days to
flowering after 0, 4 and 8 weeks vernalization (flower0, 4 and 8). The left panel
of Figure 1 gives both the regression coefficients (top) and the direct effects
(bottom). The grey zones correspond to chromosomes 2, 8 and 10, respectively.
The exact location of the markers within these chromosomes are displayed in
the right panel, where the size of the dots reflects the absolute value of the
regression coefficients (top) and of the direct effects (bottom). The interest of
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Fig. 1. Estimation of direct Ω and indirect B genetic effects of the markers

considering direct effects rather than regression coefficients appears clearly on
Figure 1, looking for example at chromosome 2. Three large overlapping regions
are observed in the coefficient plot, for each flowering trait. A straightforward
interpretation would suggest that the corresponding region controls the general
flowering process. The direct effect plot allows to go deeper and shows that
these three responses are actually controlled by separated sub-regions within
this chromosome. The confusion in the coefficient plot only results from the
strong correlations observed between the three flowering traits.
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